Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides
نویسندگان
چکیده
Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.
منابع مشابه
Erratum to: Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides
© Korea Nano Technology Research Society 2017. This article is distributed under the terms of the Creative Commons Attribu‐ tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons...
متن کاملStrengthening of Low-Alloy Hot-Forging Steel with Nano- sized Precipitation
3 IMR KINKEN Research Highlights 2012 IMR KINKEN Research Highlights 2012 To reduce the fuel consumption by automobiles, medium carbon steels for forging parts, such as shafts and connecting rods, must be further strengthened. When carbide-forming elements such as Ti, Nb, and V, are alloyed with carbon steels, a fine dispersion of alloy carbides and large precipitation hardening can be achieved...
متن کاملStrength Recovery in a High-Strength Steel During Multiple Weld Thermal Simulations
BlastAlloy 160 (BA160) is a low-carbon martensitic steel strengthened by copper and M2C precipitates. Heat-affected zone (HAZ) microstructure evaluation of BA160 exhibited softening in samples subjected to the coarse-grained HAZ thermal simulations of this steel. This softening is partially attributed to dissolution of copper precipitates and metal carbides. After subjecting these coarse-graine...
متن کاملGrain Refinement of Dual Phase Steel via Tempering of Cold-Rolled Martensite
A microstructure consisting of ultrafine grained (UFG) ferrite with average grain size of ~ 0.7 µm and dispersed nano-sized carbides was produced by cold-rolling and tempering of the martensite starting microstructure in a low carbon steel. Subsequently, fine grained dual phase (DP) steel consisting of equiaxed ferrite grains with average size of ~ 5 µm and martensite islands with average size ...
متن کاملThe Effect of Controlled Thermo Mechanical Processing on the Properties of a High Strength Steel
In this paper, an ultra low carbon High Strength Low Alloy Grade Steel was subjected to a two-step forging process and this was followed by different post cooling methods. The highest strength was obtained at a faster cooling rate due to the highly dislocated acicular ferrite structure with the fine precipitation of microalloying carbides and carbonitrides. At a slow cooling rate, the strength ...
متن کامل